Functional Analysis

Bartosz Kwaśniewski

Faculty of Mathematics, University of Białystok

Lecture 10

Adjoint operators

math.uwb.edu.pl/~zaf/kwasniewski/teaching

H – is a fixed Hilbert space.

Thm (Riesz-Fréchet) A map $f: H \to \mathbb{F}$ is a bounded linear functional \iff there is $y \in H$ such that

$$f(x) = \langle x, y \rangle$$
 for every $x \in H$,

and then ||f|| = ||y||. Hence the map $H \ni y \longmapsto \langle \cdot, y \rangle \in H^*$ is an isometric antilinear isomorphism: $H \stackrel{anty}{\cong} H^*$.

Proof: If $f(x) := \langle x, y \rangle$, $x \in H$, for some $y \in H$, then $f \in H^*$ and ||f|| = ||y|| (see the proof of **Prop** from Lecture 7). Hence $H \ni y \longmapsto \langle \cdot, y \rangle \in H^*$ is an isometry, which is antilinear, because the scalar product is antilinear in the second argument.

Let now $f \in H^*$ be arbitrary. We can assume that $f \neq 0$, as if $f \equiv 0$, then $f(x) = \langle x, 0 \rangle$ for $x \in H$. Since $M := \ker f \neq H$, we get $\{0\} \neq M^{\perp} \subseteq H$. In fact we claim that $\dim(M^{\perp}) = 1$. Indeed,

if y_1 , $y_2 \in M^{\perp} \setminus \{0\}$, then $f(y_1), f(y_2) \neq 0$ and for $\lambda := \frac{f(y_2)}{f(y_1)} \in \mathbb{F}$

$$f(\lambda y_1 - y_2) = \lambda f(y_1) - f(y_2) = f(y_2) - f(y_2) = 0.$$

Hence $\lambda y_1 - y_2 \in \ker f = M$. But $\lambda y_1 - y_2 \in M^{\perp}$ (M^{\perp} is a linear space). Thus $y_2 = \lambda y_1$, as $M \cap M^{\perp} = \{0\}$. Hence $\dim(M^{\perp}) = 1$.

Take any $y_0 \in M^{\perp}$ such that $||y_0|| = 1$. Then for $x \in H$ we have $P_{M^{\perp}}x = \langle x, y_0 \rangle y_0$ (as $M^{\perp} = \{\lambda y_0 : \lambda \in \mathbb{F}\}$) and therefore $f(x) = f(P_M x + P_{M^{\perp}}x) = f(P_M x) + f(P_{M^{\perp}}x) = 0 + f(\langle x, y_0 \rangle y_0)$ $= \langle x, y_0 \rangle f(y_0) = \langle x, \overline{f(y_0)} y_0 \rangle$.

Hence putting
$$y:=\overline{f(y_0)}y_0$$
 we get $f(x)=\langle x,y\rangle$, $x\in H$.

Cor. Let (Ω, Σ, μ) be a measure space. Every bounded linear functional $f: L^2(\mu) \to \mathbb{F}$ is of the form

$$f(x) = \int_{\Omega} x(t)y(t) d\mu, \qquad x \in L^2(\mu),$$

where $y \in L^2(\mu)$, and $||f|| = ||y||_2 = \left(\int_{\Omega} |y(t)|^2 d\mu \right)^{\frac{1}{2}}$.

Thm. If $T: H \to K$ is a bounded linear operator between two Hilbert spaces H and K, then there exists exactly one function $T^*: K \to H$ such that

$$\langle Tx, y \rangle = \langle x, T^*y \rangle$$
 for all $x \in H, y \in K$. (1)

Moreover, $T^* \in B(K, H)$, $||T^*|| = ||T||$ and $(T^*)^* = T$.

Def. T^* is called the (Hermitian) adjoint of the operator T

Proof: For fixed $y \in K$ the map $f(x) := \langle Tx, y \rangle$, $x \in H$, is a bounded functional on H. In particular,

$$|f(x)| = |\langle Tx, y \rangle| \le ||Tx|| \cdot ||y|| \le ||T|| \cdot ||y|| \cdot ||x||,$$

whence $||f|| \le ||T|| \cdot ||y||$. Hence by **Thm**. (Riesz-Fréchet) there is a unique vector in H, that we denote by T^*y , such that $f(x) = \langle x, T^*y \rangle$, $x \in H$, that is $\langle Tx, y \rangle = \langle x, T^*y \rangle$ for $x \in H$.

Moreover, $||T^*y|| = ||f|| \le ||T|| \cdot ||y||$. This proves existence and uniqueness of $T^*: K \to H$ satisfying (1).

4 / 10

 T^* is linear, because for y_1 , $y_2 \in \mathcal{K}$, $\lambda \in \mathbb{F}$ and $x \in \mathcal{H}$

$$\langle x, T^*(\lambda y_1 + y_2) \rangle = \langle Tx, \lambda y_1 + y_2 \rangle = \overline{\lambda} \langle Tx, y_1 \rangle + \langle Tx, y_2 \rangle$$

$$= \overline{\lambda} \langle x, T^* y_1 \rangle + \langle x, T^* y_2 \rangle$$

$$= \langle x, \lambda T^* y_1 \rangle + \langle x, T^* y_2 \rangle = \langle x, \lambda T^* y_1 + T^* y_2 \rangle.$$

Hence $T^*(\lambda y_1 + y_2) = \lambda T^* y_1 + T^* y_2$. From the previously obtained inequality $||T^*y|| \le ||T|| \cdot ||y||$ we get $||T^*|| \le ||T||$. To show the opposite inequality, let us note that the situation is symmetric and we can swap T and T^* . More precisely,

$$\langle T^*x, y \rangle = \overline{\langle y, T^*x \rangle} = \overline{\langle Ty, x \rangle} = \langle x, Ty \rangle,$$

whence $(T^*)^* = T$ and in particular $||T|| = ||(T^*)^*|| \le ||T^*||$.

Ex. If
$$H = \mathbb{F}^n$$
 and $K = \mathbb{F}^m$, then for $A = [a_{i,j}]_{i=1,j=1}^{m,n} \in B(H,K)$

$$A = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{pmatrix} \xrightarrow{A^*} A^* = \begin{pmatrix} \overline{a_{11}} & \overline{a_{21}} & \dots & \overline{a_{m1}} \\ \overline{a_{12}} & \overline{a_{22}} & \dots & \overline{a_{m2}} \\ \vdots & \vdots & \ddots & \vdots \\ \overline{a_{1n}} & \overline{a_{2n}} & \dots & \overline{a_{nm}} \end{pmatrix}_{5/10}$$

Prop. (properties of adjoint) $T, S \in B(H, K), R \in B(K, L)$

- o involution: $(T^*)^* = T$
- **antylinearity**: $(\alpha T + \beta S)^* = \overline{\alpha} T^* + \overline{\beta} S^*$, for $\alpha, \beta \in \mathbb{F}$
- antimultiplicativity: $(RT)^* = T^*R^*$
- ① C^* -equality: $||T||^2 = ||T^*T||$.

(b)
$$\langle (\alpha T + \beta S)x, y \rangle = \alpha \langle Tx, y \rangle + \beta \langle Sx, y \rangle = \alpha \langle x, T^*y \rangle + \beta \langle x, S^*y \rangle$$

= $\langle x, \overline{\alpha} T^* \rangle + \langle x, \overline{\beta} S^*y \rangle = \langle x, (\overline{\alpha} T^* + \overline{\beta} S^*)y \rangle$.

- (c) $\langle RTx, y \rangle = \langle Tx, R^*y \rangle = \langle x, T^*R^*y \rangle$.
- (d) Note that $||T^*T|| \le ||T^*|| \cdot ||T||$ (since the operator norm is submultiplicative) and since * is an isometry, we get $||T^*T|| \le ||T||^2$. On the other hand, for $h \in H$ we have

 $||Th||^2 = \langle Th, Th \rangle = \langle h, T^*Th \rangle \overset{\mathsf{Schwartz}}{\leqslant} ||h|| ||T^*Th|| \leqslant ||T^*T|| ||h||^2$

Thus $||T||^2 \le ||T^*T||$ and concluding $||T||^2 = ||T^*T||$.

Lem. For $U: H \to K$ the following conditions are equivalent:

- lacktriangledown U is an isometry,
- U preserves the inner product,
- $0 U^*U = 1.$

Proof: (1) \Longrightarrow (2). If U is an isometry, then by the polarization formulas for $x,y\in H$ and e.g. for $\mathbb{F}=\mathbb{C}$

$$\langle Ux, Uy \rangle = \frac{1}{4} \sum_{k=0}^{3} i^{k} ||Ux + i^{k}Uy||^{2} = \frac{1}{4} \sum_{k=0}^{3} i^{k} ||U(x + i^{k}y)||^{2}$$
$$= \frac{1}{4} \sum_{k=0}^{3} i^{k} ||x + i^{k}y||^{2} = \langle x, y \rangle.$$

 $(2)\Longrightarrow (3)$. For any $x,y\in H$ we have

$$\langle Ux, Uy \rangle = \langle x, y \rangle \Leftrightarrow \langle x, U^*Uy \rangle = \langle x, y \rangle \Leftrightarrow \langle x, U^*Uy - y \rangle = 0.$$

Hence $U^*Uy - y = 0$, that is $U^*Uy = y$. Equivalently, $U^*U = 1$.

 $(3)\Longrightarrow (1)$. For any $x\in H$ we have

$$||Ux||^2 = \langle Ux, Ux \rangle = \langle x, U^*Ux \rangle = \langle x, x \rangle = ||x||^2.$$

Def. $U: H \to K$ is **unitary** if it is an invertible isometry.

Cor. *U* is a unitary operator if and only if $U^*U = UU^* = 1$.

Proof: If $U^*U = UU^* = 1$, then U is an invertible isometry, where $U^* = U^{-1}$, and so U is unitary. If U is unitary, then $U^*U = 1$, because U is an isometry, and so $U^{-1} = 1U^{-1} = U^*UU^{-1} = U^*$, that is $U^*U = UU^* = 1$.

Characterization of operators in algebraic terms

Relation	operator type
$T = T^*$	self-adjoint
• •	<u> </u>
$TT^* = T^*T$	normal
$P^2 = P, P = P^*$	orthogonal projection
$U^*U=1$	isometry
$U^*U=UU^*=1$	unitary

Rem. Unitary operator = "normal isometry".

Ex. (unilateral shift operator)

The operator $U:\ell^2 \to \ell^2$ given by

$$U(x(1),x(2),x(3),...) := (0,x(1),x(2),...)$$

is an isometry, but not a unitary, because $UH = \{x \in \ell^2 : x(1) = 0\} \neq H$. Moreover

$$U^*(x(1), x(2), x(3), \dots) = (x(2), x(3), \dots),$$

as

$$=0\cdot\overline{y(1)}+x(1)\overline{y(2)}+x(2)\overline{y(3)}+\dots$$

 $\langle Ux, y \rangle = \langle (0, x(1), x(2), x(3), \dots), (y(1), y(2), y(3), \dots) \rangle$

$$=\langle (x(1),x(2),x(3),\ldots),(y(2),y(3),\ldots)\rangle=\langle x,U^*y\rangle.$$

In particular, ker $U^*=\{x\in\ell^2:x=(x(1),0,0,\dots)\}
eq\{0\}$ and

$$\label{eq:UU} \textit{U}^*\textit{U} = 1, \qquad \textit{UU}^* = \textit{P}_{\textit{UH}} = 1 - \textit{P}_{\ker\textit{U}^*} \neq 1.$$

Rem. $UU^* = P_{UH} = 1 - P_{\ker U^*}$ for any isometry U

Ex. (multiplication operators) Let $H = L^2(\mu)$, where (Ω, Σ, μ) is a measure space. For any $a \in L^{\infty}(\mu)$ the multiplication operator

$$(M_a x)(t) = a(t)x(t), \qquad x \in L^2(\mu), \ t \in \Omega,$$

is bounded and $\|M_a\|=\|a\|_{\infty}$ (see **Lecture 4**). It is easy to check that for any $a,b\in L^{\infty}(\mu)$ we have

$$(M_a)^* = M_{\overline{a}}, \qquad M_a M_b = M_{ab}.$$

Since multiplication of functions is commutative, multiplication operators are normal

$$M_a^* M_a = M_{\bar{a}a} = M_{|a|^2} = M_{a\bar{a}} = M_a M_a^*.$$

The above properties for the operator $M_a: L^2(\mu) \to L^2(\mu)$ depend only on the range of the function $a: \Omega \to \mathbb{C}$. Namely

$$M_a$$
 self-adjoint \iff a is real valued μ -a.e.

 M_a is a projection \iff a attains only values 0, 1 μ -a.e.

 M_a is unitary \iff a attains values in the unit circle μ -a.e.